Population genetic evidence for sex‐specific dispersal in an inbred social spider
نویسندگان
چکیده
Dispersal in most group-living species ensures gene flow among groups, but in cooperative social spiders, juvenile dispersal is suppressed and colonies are highly inbred. It has been suggested that such inbred sociality is advantageous in the short term, but likely to lead to extinction or reduced speciation rates in the long run. In this situation, very low levels of dispersal and gene flow among colonies may have unusually important impacts on fitness and persistence of social spiders. We investigated sex-specific differences in dispersal and gene flow among colonies, as reflected in the genetic structure within colonies and populations of the African social spider Stegodyphus dumicola Pocock, 1898 (Eresidae). We used DNA fingerprinting and mtDNA sequence data along with spatial mapping of colonies to compare male and female patterns of relatedness within and among colonies at three study sites. Samples were collected during and shortly after the mating season to detect sex-specific dispersal. Distribution of mtDNA haplotypes was consistent with proliferation of social nests by budding and medium- to long-distance dispersal by ballooning females. Analysis of molecular variance and spatial autocorrelation analyses of AFLPs showed high levels of genetic similarity within colonies, and STRUCTURE analyses revealed that the number of source populations contributing to colonies ranged from one to three. We also showed significant evidence of male dispersal among colonies at one site. These results support the hypothesis that in social spiders, genetic cohesion among populations is maintained by long-distance dispersal of female colony founders. Genetic diversity within colonies is maintained by colony initiation by multiple dispersing females, and adult male dispersal over short distances. Male dispersal may be particularly important in maintaining gene flow among colonies in local populations.
منابع مشابه
No sex-biased dispersal in a primate with an uncommon social system—cooperative polyandry
An influential hypothesis proposed by Greenwood (1980) suggests that different mating systems result in female and male-biased dispersal, respectively, in birds and mammals. However, other aspects of social structure and behavior can also shape sex-biased dispersal. Although sex-specific patterns of kin cooperation are expected to affect the benefits of philopatry and dispersal patterns, empiri...
متن کاملNatal Dispersal, Mating Patterns, and Inbreeding in the Ant Formica exsecta.
Sex-biased dispersal and multiple mating may prevent or alleviate inbreeding and its outcome, inbreeding depression, but studies demonstrating this in the wild are scarce. Perennial ant colonies offer a unique system to investigate the relationships between natal dispersal behavior and inbreeding. Due to the sedentary life of ant colonies and lifetime sperm storage by queens, measures of disper...
متن کاملGenetic evidence for female-biased dispersal and gene flow in a polygynous primate.
Many models of sex-biased dispersal predict that the direction of sex-bias depends upon a species' mating system. In agreement with this, almost all polygynous mammals show male-biased dispersal whereas largely monogamous birds show female-biased dispersal (FBD). The hamadryas baboon (Papio hamadryas hamadryas) is polygynous and so dispersal is predicted to be male biased, as is found in all ot...
متن کاملGenetic evidence for male-biased dispersal in the Qinghai toad-headed agamid Phrynocephalus vlangalii and its potential link to individual social interactions
Sex-biased dispersal has profound impacts on a species' biology and several factors have been attributed to its evolution, including mating system, inbreeding avoidance, and social complexity. Sex-biased dispersal and its potential link to individual social interactions were examined in the Qinghai toad-headed agamid (Phrynocephalus vlangalii). We first determined the pattern of sex-biased disp...
متن کاملSex-biased juvenile dispersal is adaptive but does not create genetic structure in island lizards
Dispersal is a potentially risky behavior that has several important implications for demography. Dispersal may be measured directly through behavioral observations or indirectly using genetic analyses. The direct approach is accurate but labor-intensive, whereas the indirect approach depends on population subdivision to infer dispersal events. Here, we combine field studies of behavior and nat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016